skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Hsiang‐He"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atmospheric chemistry plays a crucial role in Earth system models (ESMs), controlling atmospheric composition and radiative balance; it is highly interactive with the physical climate, biogeochemical cycles, and human systems. However, it often imposes computational challenges in an ESM. Here we develop a full troposphere‐stratosphere interactive chemistry module for the US Department of Energy's Energy Exascale Earth System Model (E3SM). We intentionally build a streamlined module based on E3SM version 2 that interacts with other components and maintains all of major chemical and chemistry‐climate feedbacks. The module incorporates a new, highly efficient tracer advection scheme; linearization of stratospheric chemistry; and abridged tropospheric chemical mechanism with 28 reactive tracers. This new model, E3SM‐chem, can readily perform century‐long climate simulations of ozone, methane, and nitrous oxide based on emission scenarios as well as provide hourly budgets for the gas‐phase radicals that drive aerosol chemistry. We evaluate E3SM‐chem with an atmosphere‐only simulation as in the recent climate model intercomparison project (CMIP6) finding results similar to the other CMIP6 models. For the present‐day, E3SM‐chem matches the standard measurement metrics for stratospheric and tropospheric ozone, surface air quality, other key reactive gases like carbon monoxide, and the methane lifetime. Overall, E3SM‐chem maintains the climate fidelity of the baseline model while adding at most 20% to the computational cost of the atmosphere model. Hence, interactive chemistry can be a default configuration for long climate simulations at resolutions of 1° or finer, which is crucial for producing self‐consistent chemistry‐climate feedbacks that alter the climate system. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Abstract This paper describes the atmospheric component of the US Department of Energy's Energy Exascale Earth System Model (E3SM) version 3. Significant updates have been made to the atmospheric physics compared to earlier versions. Specifically, interactive gas chemistry has been implemented, along with improved representations of aerosols and dust emissions. A new stratiform cloud microphysics scheme more physically treats ice processes and aerosol‐cloud interactions. The deep convection parameterization has been largely improved with sophisticated microphysics for convective clouds, making model convection sensitive to large‐scale dynamics, and incorporating the dynamical and physical effects of organized mesoscale convection. Improvements in aerosol wet removal processes and parameter re‐tuning of key aerosol and cloud processes have improved model aerosol radiative forcing. The model's vertical resolution has increased from 72 to 80 layers with the extra eight layers added in the lower stratosphere to better simulate the Quasi‐Biennial Oscillation. These improvements have enhanced E3SM's capability to couple aerosol, chemistry, and biogeochemistry and reduced some long‐standing biases in simulating tropical variability. Compared to its predecessors, the model shows a much stronger signal for the Madden‐Julian Oscillation, Kelvin waves, mixed Rossby‐gravity waves, and eastward inertia‐gravity waves. Aerosol radiative forcing has been considerably reduced and is now better aligned with community best estimates, leading to significantly improved skill in simulating historical temperature records. Its simulated mean‐state climate is largely comparable to E3SMv2, but with some notable degradation in shortwave cloud radiative effect, precipitable water, and surface wind stress, which will be addressed in future updates. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026